I have forgotten
my Password

Or login with:

  • Facebookhttp://facebook.com/
  • Googlehttps://www.google.com/accounts/o8/id
  • Yahoohttps://me.yahoo.com
COST (GBP)
this unit 4.91
sub units 0.00
+
0

Permutation Lex

Progressively generates all the permutations of the given size, in lexicographic order.
Controller: CodeCogs

add cart

Interface

C++

Class PermutationLex

Consider the permutations of size n

and

Now consider the next two numbers in the numerical base n + 1, corresponding to each permutation

Then \tau is said to be the lexicographic succesor of \sigma if and only if N_{\tau} > N_{\sigma}.

This class progressively generates all the permutations of the given size, in lexicographic order, starting with the identical permutation.

Example:

#include <codecogs/maths/combinatorics/permutations/permutationlex.h>
#include <iostream>
int main()
{
  Maths::Combinatorics::Permutations::PermutationLex P(7);
  std::cout << "The first 5 lexicographic permutations of 7 elements:";
  std::cout << std::endl;
  for (int i = 0; i < 5; i++)
  {
    std::vector<int> alpha = P.getNext();
    for (int j = 0; j < alpha.size(); j++)
      std::cout << alpha[j] << " ";
    std::cout << "\t rank = " << P.getRank();
    std::cout << std::endl;
  }
  return 0;
}

Output:

The first 5 lexicographic permutations of 7 elements:
1 2 3 4 5 6 7    rank = 1
1 2 3 4 5 7 6    rank = 2
1 2 3 4 6 5 7    rank = 3
1 2 3 4 6 7 5    rank = 4
1 2 3 4 7 5 6    rank = 5

References:

SUBSET, a C++ library of combinatorial routines, http://www.csit.fsu.edu/~burkardt/cpp_src/subset/subset.html

Authors

Lucian Bentea (August 2005)
Source Code

Source code is available when you buy a Commercial licence.

Not a member, then Register with CodeCogs. Already a Member, then Login.