I have forgotten
my Password

Or login with:

  • Facebookhttp://facebook.com/
  • Googlehttps://www.google.com/accounts/o8/id
  • Yahoohttps://me.yahoo.com
get GPL
COST (GBP)
this unit 5.62
sub units 10.13
+
0
MathsSpecialGamma

gamma Upper reg inv

The inverse of the regularized upper incomplete Gamma integral
Controller: CodeCogs

get GPL add to cart

Dependents

Info

Interface

C++
Excel

GammaUpper Reg Inv

 
doublegammaUpper_reg_invdoublea
doubley0 )
This function returns the inverse of the regularized "upper" incomplete Gamma Integral, thereby finding the root of:

where

In otherwords, give y, this fucntion finds x such that
gammaUpper_reg(a,x) = y
It therefore find the lower limit of the Gamma integral.

The function computes the inverse of the regularized upper incomplete Gamma integral, by finding the lower limit for the Gamma integral.

This function, start within an approximate value of where t = 1 - d - CDF_inv(y) \sqrt(d) and d = \frac{1}{9a}

The routine will performs up to 10 Newton iterations to find the root of gammaUpper_reg(a,x) - y = 0.

Accuracy:

Tested at random a, y in the intervals indicated. <pre> Relative error: domain(a,y) domain # trials peak rms 0.5,100 0,0.5 100000 1.0e-14 1.7e-15 0.01,0.5 0,0.5 100000 9.0e-14 3.4e-15 0.5,10000 0,0.5 20000 2.3e-13 3.8e-14 </pre>

Example 1

#include <stdio.h>
#include <codecogs/maths/special/gamma/gammaupper_reg_inv.h>
#include <codecogs/maths/special/gamma/gamma_upper_reg.h>
 
int main()
{
  for(double x=1, a=0.01; x<10; x+=0.5,a+=0.1)
  {
    double y = Maths::Special::Gamma::gammaUpper_reg(a, x);
    printf("\n gammaUpper_reg(%lf,%lf)=%lf",a,x,y);
    double x2= Maths::Special::Gamma::gammaUpper_reg_inv(a, y);
    printf("   gammaUpper_reg_inv(%lf, %lf)=%lf", a,y,x2);
  }
  return 0;
}
Output:
gammaUpper_reg(0.010000,1.000000)=0.002216   gammaUpper_reg_inv(0.010000, 0.002216)=1.000000
 gammaUpper_reg(0.110000,1.500000)=0.012627   gammaUpper_reg_inv(0.110000, 0.012627)=1.500000
 gammaUpper_reg(0.210000,2.000000)=0.013812   gammaUpper_reg_inv(0.210000, 0.013812)=2.000000
 gammaUpper_reg(0.310000,2.500000)=0.012406   gammaUpper_reg_inv(0.310000, 0.012406)=2.500000
 gammaUpper_reg(0.410000,3.000000)=0.010395   gammaUpper_reg_inv(0.410000, 0.010395)=3.000000
 gammaUpper_reg(0.510000,3.500000)=0.008433   gammaUpper_reg_inv(0.510000, 0.008433)=3.500000
 gammaUpper_reg(0.610000,4.000000)=0.006726   gammaUpper_reg_inv(0.610000, 0.006726)=4.000000
 gammaUpper_reg(0.710000,4.500000)=0.005311   gammaUpper_reg_inv(0.710000, 0.005311)=4.500000
 gammaUpper_reg(0.810000,5.000000)=0.004168   gammaUpper_reg_inv(0.810000, 0.004168)=5.000000
 gammaUpper_reg(0.910000,5.500000)=0.003259   gammaUpper_reg_inv(0.910000, 0.003259)=5.500000
 gammaUpper_reg(1.010000,6.000000)=0.002542   gammaUpper_reg_inv(1.010000, 0.002542)=6.000000
 gammaUpper_reg(1.110000,6.500000)=0.001979   gammaUpper_reg_inv(1.110000, 0.001979)=6.500000
 gammaUpper_reg(1.210000,7.000000)=0.001540   gammaUpper_reg_inv(1.210000, 0.001540)=7.000000
 gammaUpper_reg(1.310000,7.500000)=0.001197   gammaUpper_reg_inv(1.310000, 0.001197)=7.500000
 gammaUpper_reg(1.410000,8.000000)=0.000930   gammaUpper_reg_inv(1.410000, 0.000930)=8.000000
 gammaUpper_reg(1.510000,8.500000)=0.000723   gammaUpper_reg_inv(1.510000, 0.000723)=8.500000
 gammaUpper_reg(1.610000,9.000000)=0.000561   gammaUpper_reg_inv(1.610000, 0.000561)=9.000000
 gammaUpper_reg(1.710000,9.500000)=0.000436   gammaUpper_reg_inv(1.710000, 0.000436)=9.500000

Parameters

athe man argument, which must be greater than zero.
y0the result of equivalence to a call from gammaUpper_reg(a,x). Must also be greater than zero.

Authors

Stephen L.Moshier. Copyright 1984, 1987, 1989, 1992, 2000
Documented and Updated by Will Bateman
Source Code

Source code is available when you agree to a GP Licence or buy a Commercial Licence.

Not a member, then Register with CodeCogs. Already a Member, then Login.