I have forgotten
my Password

Or login with:

• http://facebook.com/
• https://www.google.com/accounts/o8/id
• https://me.yahoo.com
COST (GBP)
0.20
0.00
0

# mean

Evaluates the mean of the Bradford distribution PDF.
Controller: CodeCogs
Contents

C++
HTML

## Mean

 doublemean( double a double b double c )[inline]
This function evaluates the mean of the Bradford distribution PDF with given arguments, defined by

where

In the example that follows, the mean is evaluated using values of the third parameter from 0.1 up to 0.8 with a step equal to 0.1, while the other two parameters have fixed values, 0 and 1. The maximum number of precision digits, implicitly set to 17, may be changed through the <em> PRECISION </em> define.

### Example 1

#include <codecogs/statistics/distributions/continuous/bradford/mean.h>
#include <iostream>
#include <iomanip>

#define PRECISION 17

int main()
{
std::cout << "The mean of the Bradford distribution PDF with";
std::cout << std::endl << "a = 0, b = 1 and " << std::endl;
std::cout << "c = {0.1, 0.2, ... , 0.7, 0.8} is" << std::endl;
std::cout << std::endl;
for (double c = 0.1; c < 0.81; c += 0.1)
{
std::cout << std::setprecision(1);
std::cout << "c = " << std::setw(3) << c << " : ";
std::cout << std::setprecision(PRECISION);
std::cout << Stats::Dists::Continuous::Bradford::mean(0.0, 1.0, c);
std::cout << std::endl;
}
return 0;
}

### Output

The mean of the Bradford distribution PDF with
a = 0, b = 1 and
c = {0.1, 0.2, ... , 0.7, 0.8} is

c = 0.1 : 0.49205868725706231
c = 0.2 : 0.48481494774707845
c = 0.3 : 0.4781613533750686
c = 0.4 : 0.47201341198846192
c = 0.5 : 0.46630346237643167
c = 0.6 : 0.46097647856777624
c = 0.7 : 0.45598710746256077
c = 0.8 : 0.45129752801813683

### References

John Burkardt's library of statistical C++ routines, http://www.csit.fsu.edu/~burkardt/cpp_src/prob/prob.html

### Parameters

 a the first parameter of the distribution (strictly less than b) b the second parameter of the distribution c the third parameter of the distribution (strictly positive)

### Returns

the mean of the Bradford distribution PDF

### Authors

Lucian Bentea (September 2005)
##### Source Code

Source code is available when you agree to a GP Licence or buy a Commercial Licence.

Not a member, then Register with CodeCogs. Already a Member, then Login.