I have forgotten

• http://facebook.com/
• https://www.google.com/accounts/o8/id
• https://me.yahoo.com COST (GBP) 0.19 0.00 0

# falling factorial

Calculates the falling factorial with arguments \e x and \e n.
Controller: CodeCogs   C++
Excel

## Falling Factorial

 doublefalling_factorial( double x int n )
The falling factorial has the following formula

Note that the number of <em> injections </em> or 1-to-1 mappings from a set of n elements to a set of m elements is . The number of permutations of n objects out of m is . Moreover, the Stirling numbers of the first kind can be used to convert a falling factorial into a polynomial, as follows:

## Example:

#include <codecogs/maths/combinatorics/arithmetic/falling_factorial.h>
#include <iostream>
int main()
{
std::cout << Maths::Combinatorics::Arithmetic::falling_factorial(4, 2) << std::endl;
return 0;
}

## Output:

12

## References:

SUBSET, a C++ library of combinatorial routines, http://www.csit.fsu.edu/~burkardt/cpp_src/subset/subset.html

### Parameters

 x the first falling factorial argument n the second falling factorial argument

### Returns

the falling factorial of the pair of values x and n

### Authors

Lucian Bentea (August 2005)
##### Source Code

Source code is available when you agree to a GP Licence or buy a Commercial Licence.

Not a member, then Register with CodeCogs. Already a Member, then Login.