• http://facebook.com/
• https://www.google.com/accounts/o8/id
• https://me.yahoo.com COST (GBP) 1.25 27.65 0

# J

Bessel function of the first kind of integer order.
Controller: CodeCogs Contents  ## Dependents C++
Excel

## Overview

These function return solutions to the Bessel Function of the first kind. They are defined as solutions to the Bessel differential equation which are both nonsingular at the origin. They are are sometimes called cylinder functions or cylindrical harmonics. Bessel function of the first kind

## References:

http://mathworld.wolfram.com/BesselFunctionoftheFirstKind.html

## J

 doubleJ( double x int v )[inline]
Returns Bessel function of the first kinds for any integer order (v)

The ratio of jn(x) to j0(x) is computed by backward recurrence. First the ratio jn/jn-1 is found by a continued fraction expansion. Then the recurrence relating successive orders is applied until j0 or j1 is reached.

If n = 0 or 1 the routine for j0 or j1 is called directly.

## Accuracy:

<pre> Relative error: arithmetic domain # trials peak rms DEC 0, 30 5500 6.9e-17 9.3e-18 IEEE 0, 30 5000 4.4e-16 7.9e-17 </pre>

## Example:

#include <stdio.h>
#include <codecogs/maths/special/bessel/j/j.h>
int main()
{
printf("\n  x      v=0      v=1      v=2      v=3      v=4      v=5");
for(double x=0; x<6; x++)
{
printf("\nx=%.1lf",x);
for(int v=0;v<=5;v++)
printf(" %8.6lf", Maths::Special::Bessel::J::J(x,v));
}
return 0;
}

## Output:

x      v=0      v=1      v=2      v=3      v=4      v=5
x=0.0 1.000000 0.000000 0.000000 0.000000 0.000000 0.000000
x=1.0 0.765198 0.440051 0.114903 0.019563 0.002477 0.000250
x=2.0 0.223891 0.576725 0.352834 0.128943 0.033996 0.007040
x=3.0 -0.260052 0.339059 0.486091 0.309063 0.132034 0.043028
x=4.0 -0.397150 -0.066043 0.364128 0.430171 0.281129 0.132087
x=5.0 -0.177597 -0.327579 0.046565 0.364831 0.391232 0.261141

### Warning

Not suitable for large n or x. Use J() with real v instead.

## References:

Cephes Math Library Release 2.8: June, 2000

### Parameters

 x value to be transformed. v order of bessel function (integer).

### Authors

Stephen L. Moshier. Copyright 1984, 1987, 2000
Documentation by Will Bateman
##### Source Code

Source code is available when you agree to a GP Licence or buy a Commercial Licence.

Not a member, then Register with CodeCogs. Already a Member, then Login.

## J

 doubleJ( double x double v )
Returns the Bessel function of the first kinds for any order (v)

Several expansions are included: the ascending power series, the Hankel expansion, and two transitional expansions for large v. If v is not too large, it is reduced by recurrence to a region of best accuracy.

The transitional expansions give 12D accuracy for v > 500.

## Accuracy:

Results for integer v are calculated with x varying from -125 to +125. Otherwise, x ranges from 0 to 125. Error criterion is absolute, except relative when |J()| > 1. <pre> arithmetic v domain x domain # trials peak rms IEEE 0,125 0,125 100000 4.6e-15 2.2e-16 IEEE -125,0 0,125 40000 5.4e-11 3.7e-13 IEEE 0,500 0,500 20000 4.4e-15 4.0e-16 Integer v: IEEE -125,125 -125,125 50000 3.5e-15 1.9e-16 </pre>

## Example:

#include <stdio.h>
#include <codecogs/maths/special/bessel/j/j.h>

int main()
{
printf("\n  x      v=0.5    v=1.5    v=2.5    v=3.5    v=4.5");
for(double x=0; x<6; x++)
{
printf("\nx=%.1lf",x);
for(double v=0.5;v<=5;v++)
printf(" %8.6lf", Maths::Special::Bessel::J::J(x,v));
}
return 0;
}

## Output:

x      v=0.5    v=1.5    v=2.5    v=3.5    v=4.5
x=0.0 0.000000 0.000000 0.000000 0.000000 0.000000
x=1.0 0.671397 0.240298 0.049497 0.007186 0.000807
x=2.0 0.513016 0.491294 0.223925 0.068518 0.015887
x=3.0 0.065008 0.477718 0.412710 0.210132 0.077598
x=4.0 -0.301921 0.185286 0.440885 0.365820 0.199300
x=5.0 -0.342168 -0.169651 0.240377 0.410029 0.333663

## References:

Cephes Math Library Release 2.8: June, 2000

### Parameters

 x input argument. v order of bessel function.

### Authors

Stephen L. Moshier. Copyright 1984, 1987, 2000
Documentation by Will Bateman
##### Source Code

Source code is available when you agree to a GP Licence or buy a Commercial Licence.

Not a member, then Register with CodeCogs. Already a Member, then Login.

Last Modified: 18 Oct 07 @ 17:07     Page Rendered: 2022-03-14 15:01:44